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Formation of loops in DNA under tension

Sumithra Sankararam&rand John F. Markb
Department of Physics, University of Illinois at Chicago, 845 W Taylor Street, Chicago, lllinois 60607-7059, USA
(Received 29 June 2004; published 24 February 2005

We study the formation of loops along a DNA molecule under applied tension, as might occur in single-
DNA micromanipulation experiments with proteins which are able to simultaneously bind two DNA sites. We
consider the case of “bare” DNA in the loop, which forms a “teardrop” shape, and the case where a single
DNA-bending protein produces a “kink” in the middle of the loop; the presence of a right-angle kink in the
loop reduces its bending energy by a factor of 3. Using the bending energy plus an estimate of the free energies
associated with fluctuations and the elasticity of the extended nonlooped DNA, we obtain a probability distri-
bution for loops as a function of loop size and force. Force strongly suppresses formation of all loops, but
suppresses large loops more severely than small ones. This quenching effect of force is reduced in the presence
of a kink in the loop. We also calculate the speed at which length is absorbed into loops between arbitrary
positions along the DNAi.e., for non-sequence-specific loop forming protgifi$ie speed of retraction of the
molecule decays as a stretched exponential function of the force with characteristic force scales depending on
the geometry of the loops.
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I. INTRODUCTION site at the apex of the loop and bend the DNA there. In the
. i i . . presence of these bending proteins, the DNA chain at the
The formation of loops in DNA is essential to a wide gnex of the loop is not smooth, but has a kink. This situation
vgrlefcy of biological processes including s_,lte-specn‘lc recomyn, fact has arisen in single-DNA looping experiments, where
bination [1], regulation of gene expression by distant se-the DNA-bending protein HUJ4] was present. The Gal re-
quenceg2—4], and DNA packagind5,6]. These examples ressor proteirGalR) represses the transcription of the gal
|r}volve loop-forming protein complexes which bind to two operon inEscherichia coliby forming a DNA loop which
sites along the DNA chain to anchor these loops. Recently, gncompasses the promoters of this operon. The experiments
mec_hanlsm for motion of nucleosomes on DNA via the for'reported in Ref[4] indicate that the binding of HU to super-
mation of loops on DNA has been propog§d We present il DNA, subsequently bending the DNA, is essential to
calculations of the free energy for forming loops on DNA giapilize a loop formed by two GalR dimers. In this paper,
molecules(a) when there is no force applied at the ends of\ye || discuss the effect of such DNA-bending proteins on
the molecule andb) when the DNA molecule is being ihe bending energy of the loops.
stretched by force. We aim at describing single-DNA micro-  \yg priefly motivate our calculations and summarize our
manipulation experiments, where the relevant forces are ipagyits. In Sec. II, the elastic theory of a semiflexible poly-
the range 0.01-50 ph8]. . _mer is used to construct a model of loop formation along a
The loop free energy can be used to estimate a variety ghna, including the effect of an applied force. The basic

quantities which are relevant to single-molecule experimentﬁjea' and motivation for this as a problem, is that the applied

on DNA with proteins. One distribution of interest is the force will act to destabilize loop formation; this idea has
probability for forming a loop of a specific length as a func-

tion of the applied tension. This quantity is relevant in study- w
ing loops between specific sequences on the DNA di&m

1(b)]. Another such quantity is the probability distribution of !
loops of different lengthgequivalently, the rate of formation
of loops of different sizesat a given applied tension. Such a
probability distribution is useful in studying “nonspecific” (b)
loop formation during which the loop-forming proteins can

form a loop between two arbitrary sequences along the DNA

chain[Fig. 1(c)]. We will discuss results for both these types
of loops.

In addition to loop-forming proteins which stabilize loops
by attaching themselves to two sites at the base of the loop M/&’/\(C)
there are other DNA-bending proteins which might bind to a
FIG. 1. Specific and nonspecific loogs) DNA chain without
any loops.(b) A specific loop of lengtH formed between the two

*Email address: sumithra@uic.edu sequences marked in boltt) Nonspecific loops that are formed
"Email address: jmarko@uic.edu between any two points along the DNA chain.
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been discussed by a few auth¢®s-13]. This paper focuses and a consequent reduction in extension while constant force
on the process of formation of loops, calculating the prob-s applied. This kind of folding up of arbitrary sequences of
ability of arriving at DNA segments formed into loop struc- DNA occurs during the packaging of DNJ&]. We calculate
tures. We do not focus on the lifetime of the formed loops,the rate at which the ends of a DNA molecule would be
and instead put our attention to the problem of how thepulled in during the formation of nonspecific loofSec. V.
length of the segment, its possible distortion by DNA-Oyr calculation applies most simply in the regime where the
bending proteins, and the applied tension, combine togeth%’isplacement of the DNA against the applied force is the
to affect the loop formation probability. The model of Sec. Il rate-limiting part of this process. We find that the speed at
requires as input the free energy of the loop, and informationy hich the molecule contracts decays as a stretched exponen-
about the geometry of the looped DNA. The calculationsy, fynction of force. This is much slower than a simple
outlined in Secs. Il and IV show the effect of DNA-bending exponential decay with force as is the case for loops of fixed

proteins in reducing the bending energy of the loops. We d o o :
this by introducing a 90° “kink” in the middle of the loop, ?ength. Specifically, the speed of nonspecific loop formation

similar to the bend inserted by HU or the DNA-bending decays ag """, wheref" andf, are characteristic force
protein HMGB1 [14,15, or other DNA-bending proteins scales depending on the geometry of the loops. These forces
[16]. are factors of the basic force scale in the systerjBA) and
The bending energy contribution to the free energy of aare higher for loops which have lower bending energy.
loop can be calculated by minimizing the energy of a fila-
ment subject to the constraint of loop closure. In Appendix
A, the resulting Euler-Lagrange equation is solved with ap-ll. FREE ENERGIES OF THE OPEN AND ONE-LOOP
propriate boundary conditions to obtain loop shapes and CONFIGURATIONS OF DNA
bending energies. These bending-energy-optimizing solu-
tions are useful for comparing relative energies of different Double-stranded DNA is quite stiff with a persistence
types of loops, but for free energy calculations we will neediength(denoted byA) of 50 nm. The persistence length is the
to take into account thermal fluctuation effects. We use emrength over which the tangent vectors at points along the
pirical formulas based on the analysis of Shimada and YapNA molecule remain correlated. In terms of the number of
makawa([17] to provide an estimate of fluctuation effects pase-pairs along the sequence this length is 150 base pairs.
(Sec. 1. , ) . The energy associated with DNA conformational changes is
We begin by presenting results for “free” looplops  \ye|| described by the wormlike chain model. The bending
along molecules with no end constraints, i.e., zero tension modulus for the DNA polymer is justsTA The Kuhn seg-

focusing on the prqbability of fogmation of loops of different ment length(denoted byb) is 2A. The unit of thermal energy
lengthsl. We consider smooth “teardrop” shaped loops, re'lkBT:4.1 pN nm(at 300 K. The total contour length of the

covering results of Stockmayer and Yamakafds8] and .
compare them with kinked loops. We find that a 90° kink canDNA m(_)lecule IS de_noted by
We first summarize the free energy of a DNA molecule

greatly reduce the loop bending energy. . . ;
We then move to results for loop formation in moleculesSubiected to force at the enfis9]. Let us consider a linear

under tensior{Sec. IV), as can be done in single-molecule Pi€c€ of a DNA molecule of length. A force f is applied to
experiments. Just as one example, force can be used in sultlis molecule. The unit tangent vector at each point along the
experiments to keep loops from forming. We study this usingcontour of the molecule is denoted hy The energy of
our model, where the looping probability depends on workdradual bends in the DNA molecule is given by
done by the applied force, as well as bending energy and

entropic contributions from thermal fluctuations. To do this A(E i)\

we first compute the minimum-energy configurations of mol- BE = —f ds(—)

ecules of lengthL containing a loop of length, for mol- 2Jo ds

ecules with their ends constrained as would occur in a mi-

cro\;vnaTLpulatlon Sxpe{rl]memApﬁ)_ende B)O'I_ _ q thwheres is the arclength variable measured along the contour
¢ then combine the resuiting bending energies and thig ,q loop. The extension of the molecule due to the applied

?e‘;.me”y of t?e I?coptLeg:on of the mole(;:l#]e, ]:N'th the fluc-¢; e is 2= fidsir2. The partition function can therefore be
uation correction for the loop region, and the free energy of e3¢ 2’ nath integral

the extended part of the polymer outside the loop, to arrive a
a free energy model for a loop along a long DNA molecule.
We use this to compute the distribution of loop sizes and B . BE-t2)
therefore the most probable loop size, as a function of ten- Z(f)= | Dle

sion. We make quantitative predictions for how tension re-

. L A d" 2
duces the most probable loop size, for both teardrop and :IDG exp{—f ds{z d_l; _gia-z|t @
0

1)

kinked loops. For all tensions, the presence of a 90° kink in

the loop reduces the most probable loop length by about a

factor of 3, thanks to the large saving in bending energy We define a dimensionless quantdysAf) which is the

introduced by the kink. free energy per unit lengtfin the fixed force ensemble
In the case where nonspecific loops form, an experimentl2,19. This quantity can be related to the partition function

might observe gradual “folding up” of the molecule in time, through
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_A Y N
g(BAn =" InZ, 3) A s

Although this can be exactly evaluated as a function of the

force [19], we give only the asymptotic forms here. In the

f—oo limit, the path integral becomes_aGaussian integral | Npl-a 15

and it can be shown that BAf)=BAf—BAf+---. The high 5 A N

force limit corresponds t@BAf>1. In the low force limit R

(when BAf< 1), g(BAN) =(BA)?/3+:--. ‘
The relative probability of forming a loop of sidefrom

R

the unlooped state is proportional to the exponential of the A7A
difference in free energy between these two states. The free o
energy of a DNA strand of length in the unlooped state (a) X

subject to an external force[Fig. 1(a)] is given by
FIG. 2. (a) The teardrop loop; angle at the apex of the loogris
L (b) The kinked loop; angle at the apex of the loopsis
In Zopen: Kg(ﬁAf)r (4)

_ _ _ _ _ lIl. LOOPS IN DNA WITH FREE ENDS
whereg(BAf) is the dimensionless free energy described in
the preceding subsection. In the “one-loop” configuration When no force is applied at the ends of the DNA mol-
[Figs. 1b) and Xc)], the free energy may be written as ecule, the parts of the molecule that do not form the loop do
not play a role in determining the shape and energy of the
loop (g=0). Hence, for all the calculations in this section, we
will work with only the portion of the DNA molecule that
forms the loop, of length. This is relevant to the cyclization
of a long chain of DNA, or the formation of a loop in a
The first term is the curvature energy cost in bending @nolecule with ends that are not under tension or other con-
portion | <A of the DNA polymer into a loop. This term is straint.
dominant for loops of small sizedess than a persistence ) ) )
length. For a perfectly circular loop8E,=2m2A/l. When A. Simple calculation for bending energy of a loop
force is present, the ends of a polymer are pulled in by an In this subsection we will first review how a loop which is
additional distance &(see Fig. 5 beloyduring the forma- teardrop shapefshown in Fig. 2a)] has substantially lower
tion of the loop due to the necessity to bend the DNA be-bending energy than a perfectly circular loop. Later, we will
tween the loop and the force-extended regions. Thereforghow that the presence of a kink in the lodfg. 2(b)] can
the total loss in length of the molecule when the loop islead to a large further reduction in the loop bending energy.
formed, neglecting bending fluctuations along the extende¢or notational convenience we will refer to these two types
parts of the chain, is+2e. The second term in E45) com-  of loops as the teardrop loop and the kinked loop, respec-
putes the work done by the external force on the portion tively. We search for configurations minimizing the bending
—(1+2¢) of the polymer which is not part of the loop. energy in which the angle of juxtaposition between the two
The final term is the contribution to the free energy due toarms of the DNA molecule is not fixed. Alternately, we could
entropic fluctuations in the loop region. For large loops, thealso do the minimization to find configurations having a
entropic cost of loop formation is the familiar Gaussian termfixed angle of juxtaposition. We will use a simple calculation
(3/2)In 1 [20]. For small loops, it is difficult to estimate the to calculate the bending energy for different types of loops
form of the contributions from entropic fluctuations analyti- based on the “circle-line” approximation introduced by Kuli
cally. Based on their detailed numerical analysis, Yamakawa&nd Schiessél7].
and Shimada proposed an empirical formula for the loop- Consider the loop shown in Fig.(&. In this case, the
closure probability, from which we extract an estimate of theangle made by the tangent vector with exis at the apex
entropic contributioi17]. We will discuss this in more detail 0f the loop is7 rad. We calculate analytically the energy of
below. In the next section, we fill in the unknowns in E5),  the loop as a function of the angieand then minimize the
for the case of a “free” loop under zero tension, whgre €nergy with respect te to find the most favorable angle.
=0. We will also discuss the form for the contributions from In Fig. 2@a), AB is a portion of a circle and has a length
fluctuations in the loop, which will allow us to compute the [/2-A, A being the length of the linear portion. Let the
zero-force loop-formation probability distribution. Then, in radius of curvature of the circle of whichB is a part beR.
Sec. IV we will generalize our results to nonzero appliedHence,R(7—a)=(1/2)-A. We also know that =R tan a.
tension. Recently, it has been suggested that very small loopgsing this the above equation becomBs(1/2)/(m-a
may require substantially less bending energy for their for-+tan«). The curvature of the circle is given by the inverse
mation, due to nonlinear elastic effects not included in Eqof this radius. The linear part of the loop does not have any
(). Our model can be readily modified to include such ef-curvature energy. Thus, the bending energy of the loop is,
fects, through modification dg, for smalll. from Eq. (1),

L-(l+2¢)
A

In Zyjosed™ [_ ﬁEb] + [ g(BAf):|

+ contributions from fluctuations. (5)
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BE(a)=2|;A(7T—a)(7T—a+tana). (6)

The minimum of this energy occurs at0.8948 rad and 4t
Enin(0.8948=15.698A/I ( kgT units). A perfectly circular
loop of lengthl has a bending energyn2A/l. The ratio of
this energy to that of a perfect circle of the same length is 3|
0.7953. This shows that the most favorable configuration for
a loop in the absence of DNA-bending proteins is the one>
shown in Fig. 2a). We note that this bending energy and
loop-opening angle are those obtained by Kalhd Schies-
sel using their “circle-line” approximatiofv].

We can generalize this argument for loops which have a
kink at the apex. For example, such a loop might be formed
by the presence of DNA-bending proteins and is shown in
Fig. 2(b). Let the angle made by the tangent vector with the
X axis at the apex of the loop k& As before, for the circular 05 >
section of the loop,R(B-a)=(1/2)-A. In the geometry
shown above,R=(1/2)/[ 8- a+(sin a—sin B)/cosa]. The
energy is

2 F

FIG. 3. (a) The teardrop loop3= rad, andb) the kinked loop,
B=2.3562 rad. These are the exact shapes of the loops.

sin a - sin ,8)

COSa

2
pE0)= 226 o - Y

E are reduced by a factor &ET). This energy is 0.712 times

) the energy of a perfectly circular loop of the same length.
As before, we choose the loop length to beAlWith 8 rigure 3a) shows the YS loop shag@ the figure, the loop

=2.356 19 radthis value of corresponds to having a 90° 5 length 1D The shape of the loop is unique and the

bend at the apex of the logpve minimize this energy with energy scales as IL/

respect toa and find that ay,=1.1929 rad andEn, We imagine also the case where a DNA-bending protein

=4.108 44\/1 ( kgT units). Expressed as a fraction of the ,rq4yces a strong kink at the apex of the loop. We model this

energy of a perfect circle this is 0.2081. Thus a kink in theby imposing a boundary conditig# 7. A loop with a 90°

loop can lead to a large reduction in loop bending energyink petween its arms at the apex h&s2.3562 rad. We find

(reducing it by a factor of almost 4 from that for a teardropinat the lowest energy configuration of such a loop has

shaped loop «=1.1874 rad andv’'=0. The energy of such a loop (@
units ofkgT) is 3.656A/I, or a fraction 0.1853 of the energy
B. Exact bending energy for noncircular loops using the of a circular loop of the same length. Comparing this energy
elastic filament model with that for the teardrop loop, we find that the presence of

We now compute the bending energy for the two differentthe 90° k_ink lowers the bending energy by almost a factor of
kinds of loops shown in Figs.(8) and 2b). Yamakawa and 4: The kinked loop is shown in Fig.(8 (the loop in the
Stockmayer calculated the equilibrium configuration for thefigure has contour length 10
teardrop loog18]. Since the ends of the loop are not sub-
jected to torque, the curvature at the base of the loop must . ) i
vanish. This boundary condition along with the constraint of AS mentioned in Sec. Il, Shimada and Yamakad]
loop closure defines the equilibrium shape of the |oopprop_osed an empirical formula for the _probablllty distribu-
uniquely. Via calculations shown in Appendix A we repro- tion including effects of thermal fluctuations in the loop re-
duce the Yamakawa-Stockmay@fS) result for the teardrop 9i0n- They began by calculating the most probable configu-
loop, and also find the minimum-energy configuration for thefation of a closed loop. Fluctuations around this lowest
kinked loop. The calculations are essentially those of théN€rgy state were integrated to obtain the entropic correction
classical “elastica” probleni21]. The influence of DNA- to the' bendlng. energy of the most probable configuration.
bending proteins on the the DNA molecule has also beed he difference in free_: energy Qf the open and clo_sed states of
studied in the context of interaction between proteins bound® DNA molecule discussed in Sec. Il appears in the expo-
to DNA [10,11]. nential term of this d|str|but|on_. Since ther_e is no external

The results of Yamakawa and Stockmayer show that whefprce. from Eq(5) and Eq.(4), this energy is just the sum of
no force is applied, the shape of the loop is determined byhe bending energy and the contributions from fluctuations.
the boundary condition of zero curvature at the base of thd Ne formula is
I[oo? [sr?e Fig.I 2a)] and by the (éonstraint f;)f rI]oop clcisuref ) {Wzn_6e_ﬁEb+0-5l‘h for a circle,

18]. The anglea was 0.8604 rad. To verify the results o p(n) = -5 —BE.+0.497

Yamakwa and Stockmayer, we use the valueg3sfr rad 28.01n7e for a teardrop,

and «=0.8604 rad in Eqs(A9) and (A1l) and obtaina’ wheren is the number of segments of lengthin the loop
=0 andf=2.1541. The energy is 14.099| (note bothf and  (n=I/b=1/[2A]), BE, is the bending energy for the loop

C. Loop length distribution at zero force
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(7/n for a circle and 7.027 for a teardrop, and the sec- 35T T 1
ond factor in the exponential gives the correction due to £ 3 [ (@) circular loo

: . S [ P ]
fluctuations, in each case. In the above formulas all lengthsS 25 [
are measured in units of a segment lengt2A. We note 2r
here that this formula diverges for loop lengths greater than ¢ = 151
few thousand kilo-base-pairs and make sure that we use i3 r
when the total length of the molecule is less than2ki|oba$es<§0'5 B . L ]
For large enoughn, the free energy must approach the Oo 500 1000 1500 2000
Gaussian limit and the probability should decay as a power number of base pairs
law (n~®?). The interpolation of the above formula to the 1 e
Gaussian limit is not relevant to our results and thus we do & 1

0.8 (b) tear—drop loop

not discuss it further. The expression for the teardrop loop 3
gives the correct value of the most probable loop size; 0.6
(around 500 base pairs ar1.6) at zero force.

We suppose that the loop is formed only when the loop-
forming sequences on the DNA polymer are nearer than
some critical distancé within a segment volumé® where
6<b. To take this effect into account we multiply the prob-
ability distribution by the factow®/b®. We consider a reac-
tion distances of 1 nm[4]. Our probabilities are therefore 35
those to find the loop ends in the same 13nrolume and
may be converted to mol/l by multiplying by a factor of 0.6.

We use the bending energies calculated in the previou
subsection to write down the probability distribution of a
single loop of sizd, relative to the open state. The expres-
sions are e L T
( 0 200 400 600 800 1000

6, -2 . i
WZE” 6g~m/N+0.514 for a circle, number of base pairs

o
N
T

probability (107 M
o
]
1

1 1 1 " 1 " " " " " " " " " "
0 500 1000 1500 2000
number of base pairs

(¢) kinked loop

n
probability (1 0° Mol/litre)
3]
1

5 FIG. 4. Zero-force probability distribution for the length of the
p(n) ={ 28_01En—5e—0.712nz/n+0.4921 for a teardrop loop loop for the circular loop, the teardrop loop, and the kinked loop.
Note that the most probable loop size shifts to shorter distances

S8 5 along the loop and the peak height increases ftanio (c).
28.01@n‘5e‘0-1853T /n+0.49  for a kinked loop,

\ spectively. We also observe that the probability of formation
(®) of these loopgequivalently, the rate of formatigrincreases

wheren=1/b is the number of statistical segments in the loopdramatically when the kink is added. In the zero-force re-

(recallb=2A). The assumption here is that the correction fordime, the bending energy is dominant and the loop that has

fluctuations has the same fored“®? for both the teardrop the lowest bending energy among the th_ree is the most prob-

loop and the kinked loop. able. At Zero force,_ num_erlcal calculations and emplrlcal_
The above expression is central to all the calculations w&nalysis also determine this peak to be around 500 base pairs

present in the following sections. We therefore reiterate thdor teardrop loop$17,22,23.

meaning of this formula. This formula gives the probability

distribution for the length of the loops formed at zero applied |y, | 0oPS IN DNA WITH ENDS CONSTRAINED BY

force. Aloop is said to be formed if two points on the DNA EXTERNAL FORCE

polymer lie within a distancé of each other. This expression

includes the bending energy and the contributions due to When tension is applied to the ends of the DNA molecule

fluctuations in the loops. The effects of an external force orfas is the case in micromanipulation experiments on RNA

the probability distribution are discussed in Sec. IV. we need to take the full length of the molecule into account
The plots in Fig. 4 show the probability distribution for [i-e., the lengt which forms the loop and the length- (I

the length of the loop formed when there is no tension ap+e€) which is outside the logp The applied force does work

plied to the ends of the DNA molecule. The distributions areto pull the two ends of the molecule together during the

plotted as a function of the number of base pairs along théormation of a loop and this work must be included in esti-

chain; recall that each segment of length 100 nm containgating the free energy. We also wish to estimate the bending

300 base pairs. We see a shift in the peak of this distributioenergy stored in the part of DNA that is outside the loop

toward smaller loops as we go from a perfectly circular loopregion in addition to the energy stored in the loop. In this

to the kinked lood Figs. 4a)—4(c)]. The most probable loop section, we calculate the bending energy, the end-to-end ex-

sizes at zero force are around 550, 480, and 110 base pabension, the length of the loop, and the “opening angle” for

for a circular loop, a teardrop loop, and a kinked loop, re-the two types of loops. We also calculate the asymptotic
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0.01pN

A 3_
s x(A) €

probability(10™° Mol/litre)
[\]
[6:]

FIG. 5. Notation for the lengths in the scaled coordinates. Note
that all quantities are specified for one half of the loop. Also shown 1t
is the “reaction distanced, which is the distance with in which the
ends of the loop must approach each other in a segment volume t
form a loop. The “opening angle” of the loop iIW°-a). The 0 ;

. . 0 500 1000 1500 2000
ends of the polymer are pulled in through a distance: &y the number of base pairs
force.

FIG. 6. Teardrop loop: Probability distribution for the length of
values of these quantities in the long-chain lirithen L the tear-drop loop as a function of the number of base pairs along
—o0) and show that the length of the lodpjis finite in this  the chain for different forcef24].
limit. We do all the calculations for one-half of the loop.

Since the loop is symmetric, all the quantities can be doubledontribution frome in calculating the work done by the force
to obtain values for the full loop. We carry out the detailedin folding the polymer into the one-loop configuration. When
calculations in Appendix B and list only the results in this BAf<1 (low force regime we useg(x)=x%/3. When BAf
section. We note that unlike the loops described above whick-1 (high force regimg we useg(x)=x— Jx. The plots in
were all described by length-independent loop shapes, theig. 6 show the probability distribution when the applied
loops of this section are members of a one-parameter familiension lies between 0.01 and 0.5 pN. The distributions are
of loop shapes. The dimensionless shape parameter can pptted as a function of the number of base pairs along the
considered to b& /I [we also use a parameter callegl(see  DNA chain (each segment of length 100 nm contains 300
Appendix B), which is more convenient as it reaches a finitehase pairs As expected, the peak of the distribution shifts
limit when L/1—cc]. Our notation for the geometry is sum- toward smaller loop sizes as the force is increased. We will

marized in Fig. 5. return to a discussion of the results in Sec. V.
A. Teardrop loop with constrained ends B. Kinked loop with constrained ends
For a teardrop loop of total lengthin a molecule of Calculations for the 90° kinked loop including ends under

length L, Ao=1.915 008(see Appendix B and E~8\A/l tension are given in Appendix B 1. We simply list the results
=15.3208/1. This is slightly more than the result for the here. For the 90° kinked loop3=2.356 19 rad, and the
energy of a teardrop loop of the same length at zero tensiophape parametek,=1.011 69 (see Appendix B and E

of 14.0549\/1. This means that for an end-constrained DNA =4.9963\/1 in the L/l — limit. Compared to the energy for
chain, the region outside the loop contributes to the bending teéardrop loop of the same length, the energy has been re-
energy and stores roughly 10% of the total energy. Hence, ifuced by a factor of almost 3.

estimating the bending energy for the DNA chain in the pres- [N the kinked loop case, the distanee0.22A and the

ence of tension, it is important to take the parts of the chaifvork done by the force in pulling the ends of the DNA
outside the loop into account. through this distance must be taken into account. The angle

We plot the probability distribution as a function of Petween the tangent vector and #exis at the base of the

the size of the loop at different forces. The typical forcesloOp is asymptoticallyx=0.954 13 rad. The “opening angle”
used in micromanipulation experiments are in the rang&f this loop is therefore 1.2333 rad.
0.01-10 pN. The free energy per unit lengifBAf) is non- The probability distribution function is
zero and the second term in E(p) must be included in 58 _
computing the probability density. Therefore, the probability ~ p(n) = 28.01§n‘5e‘8"0 SinP(514)/n+0.49g=2x 1.22ng(BAf)
density for a loop of sizé=nb is given by the expression

(10)

8
p(n) = 28-01@”_59_4)‘°/n+0'49me_2ng(ﬁm)- (9 The factor 1.22 in the last term takes into account the change
in extension due to both the formation of the loop and mov-
The change in the end-to-end extension of the whole moling the ends through the distaneeThe plots in Fig. 7 show
ecule in the looped state from its fully extended state is onlythe probability distribution function as a function of the size
1.04 times the size of the loop. We therefore neglect the extraf the loop (in base pairs for different values of applied
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FIG. 8. Most probable loop size fd¢a) the teardrop loop antb)
FIG. 7. Kinked loop: Probability distribution for the length of the kinked loop as a function of the applied tension in piconewtons.
the kinked loop as a function of the number of base pairs along the

chain for forces between 0.01 and 1 pN. force in bringing the ends of the DNA closer while forming
the loop starts dominating over the bending energy.
tension. The lower bending energy of the kinked loop causes Figure 9 shows the logarithm of the probability at the
the peak of the distribution function to occur at smaller looppeak of the probability distributions shown in Figs. 6 and 7,
sizes than in the case of a tear-drop loop. as a function of force. At 0.01 pN, the most probable loop
size for the teardrop loop is 550 base pairs which occurs with
a probability of the order of I3 mol/l [24]. For the kinked
V. RESULTS FOR LOOP FORMATION ALONG DNA loop at the same force the most probable loop of size 160
UNDER TENSION base pairs occurs with a probability of the order of
107° mol/I. This means that the rate of formation of a kinked
loop is much higher than the rate of formation of the teardrop
The plots in Figs. 8 and 9 show the most probable loogdoop. For the kinked loop, the rate at which the value of the
size and the logarithm of the probability at the peak, as arobability at the peak decreases is much slower than that for
function of the applied tension. From Fig. 8 we observe thathe teardrop loop, showing that the teardrop loop is more
the most probable loop size for teardrop loops is larger thasensitive to force.
that for kinked loops. The higher bending energy causes the To see the effect of force on the formation of nonspecific
teardrop loop to be nearly three times larger than the kinketbops more clearly we ploj(';p(l)l dl as a function of force.
loop in the low force(bending-energy-dominatgdegime. In This quantity is proportional to the rate at which length is
both cases, the loop size decreases with increasing force. Absorbed into loops during the initial folding up of a long
the applied force is increased, the work done by the applie®NA chain. This way of estimating the dynamics of loop

A. Nonspecific loops
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s 1 FIG. 10. Plot of the logarithm of the rate at which length is
el ] absorbed into nonspecific loops. THexis is logd f5 dl Ip(1)]; the
= I integral is proportional to the rate at which length is retracted dur-
5 -65 | | ing the formation of the first few loops along a long DNA molecule.
§ Shown as an inset is a sketch of the process by which the DNA
& 716 _ molecule is folded into nonspecific loops of different sizes when it
§ L is being stretched by force. The quantityis the integral shown
% 75 L 4 above and is the applied tension.
o
3 8 ] loops with lower bending energy.e., loops that are easier to
I form). We find that for a teardrop loofy=0.0051 pN and
85| | f*=0.0012 pN, while for a kinked looff,=0.0134 pN and
f*=0.0372 pN. Preliminary results for single-DNA microma-
-9 . . . . . nipulation experiments in the presence of proteins which
0 0.2 0.4 0.6 0.8 1 1.2 nonspecifically loop the DNA show the existence of charac-
Force (pN) teristic force scales for loop formatid25].
FIG. 9. Logarithm of the probability at the peak as a function of B. Specific loops

the applied tension in piconewtor(s) teardrop loop angb) kinked
loop. The interpolation between the low and high force regimes iﬁ:)
plotted in dotted lines.

When loops are formed between specific sequences on the
NA chain, the length of the loop is fixe( is the distance
between the two sequences along the ch#n example is

formation is valid at large forces where the energy barrier foshown in Fig. 1b). For such specific loops, it is useful to
the formation of the loop is greater than a féyT. The study the behavior of the probability distribution as a func-

energy barrier for the loop formation is the sum of the freelion of the applied force. These plots are shown in Figs. 11

energy for loop formation and the work done by the force. Atand 12 for the two kinds of loops. .
forces above 0.1 pN, the energy barrier is a fieyV. This 'The low forcg regime is dominated by t'he bending energy.
means that at forces higher than 0.1 pN, the rate at which th ince the bending energy of larger loops is lower, they domi-

ends of the polymer are retracted is dominated by the freBate in the low force regime. As the force increases, the
energy and the work done by the force and the probabilit ending energy competes with the work done by the force in

Lo 9) . " ulling the ends of the DNA together while forming the loop.
distribution estimated from these quantities can be used 94 crossover from the bending-energy-dominated to the

calculate the rate. o force-dominated regime is indicated by the curves crossing
From the graph shown in Fig. 10, we see that the speed Qfch other around 0.3 pN. At forces higher than 0.3 pN, the
nonspecific loop formation decays with increasing force as gyork done by the force is dominant and favors loops of
stretched exponential. This slower decay occurs during nonsmaller size(200 base pairs in the plot shown in Fig.)11
specific folding because loops of different lengths can formThe same trend is observed for a kinked loop as shown in
in contrast to specific folding where loops have a fixedFig. 12.
length. The asymptotic form for the decay ésV(=f )/fo,
where f* and f, are characteristic force scales of the
stretched exponentidthis is easily shown using a steepest This paper describes the formation of loops in a DNA
descent calculation The values off, and f* are higher for molecule under tension. We can estimate the most probable

VI. CONCLUSIONS
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-5 - ' - ' ' - the distribution for kinked loops; we find that a 90° kink
_ reduces the peak position to around 150 base pairs at zero
75| ©--©S00basepairs | force. Another prediction that can be made is the shift of the
A - - 4 400 base pairs " . .
o~ 200 base pairs peak position with force and an estimate of the force range
[l . below which loop formation is favored. From Figs. 6 and 7,

|
-
o

for nonspecific loops, we infer that the most probable loop
size decreases with increasing force. The teardrop loops are
more sensitive to increase in force and are suppressed at
lower forces compared to kinked loops. Very recently, ex-
periments which show anomalously large loop formation on
very short(100 base paij)sDNA [26] have led to the pro-
posal that thermally excited defects in the double-helix struc-
-175 T ture might allow similar sharp bends to occur in the absence
of bending protein$23]; our calculations might be applied to
20 A . . . . . this situation as well.
0 01 02 03 04 05 06 07 We also estimate the rate at which the ends of a DNA
force (pN) chain are pulled in by nonspecific loop formation. The esti-
FIG. 11. Probability of forming a teardrop loop of a specific mate for this process is valid at forces high_er than 0.1 pN. At
length as a function of the applied tension in piconewtons. ThdOWer forces, the free energy cost of formation of loops in the
curves cross each other around 0.3 pN, above which the smallef§W hundred base-pair range is low enough that the dynamics

loop is the most probable. The interpolation between the low an®f the _|00p formation process becomes dominated by the
high force regimes is plotted in dotted lines. dynamics of the two ends of the polymer randomly ap-

proaching each other within a distance®fThe plot of the
speed of retraction by nonspecific loop formation is shown as
a function of force in Fig. 10. The speed of retraction for

due to the presence of a DNA-bending profesnbstantially both types of loops decays as a stretched exponential func-

reduces the bending energy of the loop. Hence, at a give '(_)n pf the for_ce. The_reduction in the speed of retraction

force, loops with kinks are smaller than those without kinks.Wlth INCrease in force Is stronger for _teardrop loope.

For example, at a force of 0.15 pN, the teardrop loop has We glso estimate the probabﬂ@quwalently, the rabec_)f

size of 400 base pairs while the kinked loop has a size of 13 rma“oﬂ of specific loops of a given length as a function .Of

base pairs. The value of the probability at the peak is highe, € appll_ed force. Shorter loops are more probable at high

for kinked loops than for teardrop loops which indicates tha orce while the longest ones are favored at forces below

these loops are formed faster. 0.3 pN.
This analytic calculation is designed to obtain the correct

position of the peak in the probability distribution at zero

force (480 base paijs Based on this, we are able to predict

-125

iR
o

Log,,(probability of loop of given size)

loop size at a given force for a loop with and without a kink
at its apex. It is found that the kinkvhich may be produced
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-6.5 | -8 100 base pairs -
5 % vy 125 base Eairs
e 5| ©——0 150 base pairs J APPENDIX A: BENDING ENERGY FOR LOOPS WITH
g FREE ENDS
(=]
s s Following YS[18], we start by minimizing the energy in
8 sl i Sec. Il subject to the constraint that the loop is closed. We
5 will minimize the energy for one half of the loop and will get
Z g5l i the full shape of the loop by reflecting this half along the
‘é’ axis. Thex andy coordinates of any point on the polymer are
& 9t 1 given byx(s)=[30-& andy(s)=[30-&,, whereg, andg, are
=3 the unit vectors along th¥ andY axes, respectively.
- 95t 1 The condition of loop closure implies that the total dis-

% . tance traveled by the polymer along theaxis must be zero
75701 02 03 04 05 06 07 08 0e 1 11  atthe apex of the loop:

force (pN) 112
0-e,=0. Al
FIG. 12. Probability of forming a kinked loop of a specific fo u-e=0 (A)

length as a function of the applied tension in piconewtons. The o
interpolation between the low and high force regimes is plotted inT he angle between the tangent vector andXtais is w(s).
dotted lines. Then, (=&, codw)+&, sin(w), (dl/ds)*=(dw/ds)?.
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The bending energy in Eql) should be minimized with
respect to the constraint in EGAL1) using a Lagrange mul-
tiplier f. The function(including the constraintto be mini-
mized is

1 ("2 [ (dw)z ]
S=— ds| Al — | —fcosw]. A2
2fo ds © (A2)
ComputingS=0 vyields the equation of motion
2
~A=Z+fsinw=0. (A3)

ds’

PHYSICAL REVIEW E71, 021911(2009

kinked loop, 8=2.3562 rad, corresponding to producing a
90° kink between the two arms of the DNA chain.

To solve fora’ andf we need one more equation in these
two variables. This is the equation for the constraint given by
Eqg. (Al). This can be written as

F((mp)I2 k)

ZJ
F((m=a)/2,k)

where the function “sn” is the Jacobi sine amplitude. Using

-2
[a'?+ (4N/A)coS al2]Y

|
dusrfu=—,
4

(A10)

To get the trajectory of points on the polymer we evaluate

Eq. (A3) using the initial values for angle and curvature as

boundary conditions. Hence, st 0,

dw
w(s=0)=a;, — =a'. (A4)
ds| (<o
Integrating the equation of motion once, we get
Al dw)\?
== =-f +C;. A5
(G oremece

C, is determined using the boundary conditions to @ge
=(A/2)a’?+f cosa. We change variables to=(m—w)/2
and letk?=2f/(C,+f). Equation(A5) becomes

d_ | [2(c1+ )
ds = A
Integration with respect to the variahleyields the trajectory

~ zf[w—w(s)]/z do . {Z(ClJr f):|1/2fsds
(m—a)l2 (1 _k2 S|r‘]2 U)l/2 - A 0 '
(A7)

1/2
} (1-Ksirfv)Y2.  (A6)

The sign on the right-hand side of the equation above id

chosen so thaw(s) always increases with increasiisg or
v(s) decreases with increasirg. In terms of elliptic inte-
grals the trajectory is

2
kY a'?+ (4fIA)cOS al2]M?

m—a

the identity in[27], the constraint equation is
[E(”_B,k>—5( ,k)
2
I, 4af v
+=|a'?+—cog al2 =1/4. (A11)
4 A

We now solve Eqs(A9) and (A1l) for the unknown vari-
ablesa’ andf numerically. The energy of the loop is given

by

using Eq.(Al).

| |
—ff dscos<u(s)+C1f ds=Cy4l,
0 0

(A12)

APPENDIX B: BENDING ENERGY FOR LOOPS WITH
CONSTRAINED ENDS

Before proceeding, we will rescale the length variable in
our equation to absorb the Lagrange multiplfeand the
persistence lengti so that the equations of motion in the
escaled coordinates can be easily solved. In the rescaled
coordinates, we denote the total length of the DNA chain by
2A and the length of the loop as\2Using the transforma-
tion o=s/s, wheresy= VA/f, the equation of motion Eq.
(A3) becomes

F(W_w(5)1k>:F<W;a,k>_|:2(ci“+f):|l/2§' Aé*-s-n . o
do? inw=0.
(A8)
Let the angle made by the tangent vector at the top of the Integrating this we get
loop begd[i.e., w(s=1/2)=p]. Therefore, given the initial val- 1/ dw )2
uesa and o', the angles (as a function off) can be deter- A +cosw=C. (B2)
mined as
T—a L 4f 172 Changing variables t¢y=(7-w)/2,
B=m—-2amF k| =-|a?+—cofal2] -k,
A 4 (d—’p) C+1(1— sir? ) (B3)
(A9) do/ 2 ce1 Y
where “am” is the Jacobi amplitude. The “am” is the inverseSince w(o) increases as increases,
of the elliptic integral of the first kind, aff(0,k),k]=6.
Alternatively, we could use and 8 as the boundary con- C+1
ditions rather thany and«’. When g is specified instead of 1- 5'”2 ¢). (B4

a', we treat Eq(A9) as an equation in the two variable$
and f. For the teardrop loop, the angjg=m rad. In the

Using a second scaling transformatiis \[(C+1)/2]0,
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JA_d2 cosw(2)=0, to be solved fok. This integral can be
written as

] 0
1 f ducog?2 anm(u,k)]=0, (B10)

N N

77777777777 where u=F((m-w)/2,K)=F(m/2,K)-3. Using the identity
in [27] we get the equation fax as

0 1 2 3 4 5 6 7 8
X N2 —Kk?) = 2E(am(\, k), K). (B11)
FIG. 13. Trajectory of the teardrop loop in the presence of apn the asymptotic limik’— 1 or A — . The solution to this
plied tension in the asymptotic limit. equation gives a finite value ol. Numerically, the
asymptotic limit is for\ is A\g=1.915 008. Sincd=(¢,k) is
dip analytic ask—1 [29], A behaves analytically close to its
<£> =—\(1-K2sirf ), (B5) asymptotic value and can be expanded as a power series

around the value a&?=1. The values of the first and higher
wherek?=2/(C+1). The trajectory of the DNA chain is the derivatives of\ with respect tok? can be obtained numeri-
solution of this equation with the appropriate boundary con£ally at points close tck2=12. This engblesé us to write the
ditions. The trajectory depends only on the paramietdine ~ Power series ag(k)=Ag+ (k= 1Ay +(k“=1)°\,+- -+, where

angle made by the tangent vector3at0 is a=0. Therefore, Mo=1.915 008,\,=0.669 85, anch,=0.8 can be computed
numerically. The lengthA can also be written as a series

F(H,k> :F<z,k> -3 (B6) aroundk®=1 [27] as
? ? 1-K? 4
This means that A(k) = |n(1 ST t 7 {In(1 o 1] -
B12
wX)=m-2 an{F<7—T,k)—2,k]. (B7) (B12)
2 Therefore,
w(A)= corresponds to the teardrop loop aat\)=8+ 7 N Ay

gives the trajectory of a loop with a kink. The parameker i e NTT
determines a family of solutions characterized by the ratio of LA In[4/(1-k)]
the length of the loop to the total length of the molecule inThjs enables us to relateé to the physical lengthgin the
each case. Ak— 1, the length of the polymer becomes in- asymptotic limi} through the relatiok?~ 1—16"2\o/!,

finite. Ask— 0, the length of the polymer approaches zero. The end-to-end extension for one half of the logf)),

These solutions are those obtained in the “elastica” problengnown in Fig. 5, can be evaluated using the identity2]:
and for the nonlinear pendulufi21,2§.

(B13)

A
2
1. Teardrop loop in the presence of tension X(A) :J dX cosw(X) = (? - 1>F<%T,k> - 2E(§,k>.
In the absence of DNA-bending proteins, the angle 0
= at half the total length of the chaifi.e., when3=A). (B14)
Therefore, The total end-to-end extensigmeasured between the points
- A andB shown in Fig. 5 is twice the above value. The ratio
A=F —,k)- (B8)  of the change in extensidffrom the maximum ofA) to the

loop length\ is asymptotically
From this expression we see thatkas 1, A — 0. Thus, the
long-chain limit(L — ) can be obtained by takirigclose to XMN-A 2 + ﬁe—xom_ (B15)
1. The trajectory of the loop in the asymptotic limit is shown A Ao |
in Fig. 13. We pause here to note that the total length of th

DNA molecule in physical units is ?—|gure 5 shows the ends of the polymer pulled in during the

formation of the loop. The relative change in extension cal-
A culated above gives us an estimate of the distandefined
|-=2\/jk/\- (B9)  asx(A)-A+\=-e. For the teardrop loop, this distance is
only a small fraction of the loop size=0.04\. Thus,e does
We also note that the Lagrange multiplfecan be physically not contribute significantly to the work done by the external
interpreted as the tension in the chain, in the absence dbrce in folding the DNA into a loop. The angle between the
thermal fluctuations. The effect of thermal fluctuations hagangent vector and the axis at the base of the loop asymp-
been taken into account in computiggBAf). totically approaches=0.5852 rad. The “opening angle” of
The loop length in the scaled coordinates, 2 deter- the loop, which is defined as the angle between the two arms
mined as follows. The constraint of loop closure yieldsof the loop at the base of the loop, is 1.9712 rad.
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We can evaluate the energy exactly in the scaled coordi- 25— 7 7 71

nates. The energy for half the total length of the loop is 2F ) 7
1.5 -
1 dw\? 1 1
= 5]0 () > 03 ) :
0 T __]
A A 05 ¢ ]
:Csz dz_sz dE COSw _10 I 1 I 2 ‘ 3 I 4 I 5 ‘ 6 ] 7 I 8
0 0 X

FIG. 14. Trajectory of the kinked loop in the presence of applied
tension in the asymptotic limit. Note the large amount of length
associated with the bend to meet the loop.

=(2-k3)A - k3(A)

aa

_2E<2,k). (B16) A(k2—2):2{E<772B,k>

The energy for the full loop is twice the above energy. As- 7= B

ymptotically, we can express this energy as a function of the -Elam A +F Kk |k (B20)

physical lengthd andl as
and has a finite valugy=1.011 69 in the asymptotic limik

16 AL can be expanded as a powerseries around its asymptotic
Es~2+———e 2, (B17)  value and corrections away frokd=1 can be calculated. We

can also show thatl-k?)?=4 tan(g/4)e™ " asymptoti-
cally [29].

The relation between this scaled energy and the total ener

ay i
E in the original coordinate System is The energy for half the total length of the lodm the

scaled unitsis

A\ _ T\ (7B
|_ES' (B18) ES—Z[E<2,|() E( > ,k)}

~ 4 sian +16 tar?é
4 4

E=4

2. Kinked loop in the presence of tension

AL 1
We now extend the calculations of the previous subsec- e‘z"OL"{ll ~3 + 005{,8/4)} asA — o,
tion for a loop that has a kink due to the presence of DNA
bending proteins. As we will show below, the presence of the (B21)

kink lowers the bending energy. The angle made by the tan- o . . :
gent vector with theX axis at the apex of the loop i8 In the asymptotic limit, the energy in physical units for a

=135°. This corresponds to having the arms of the DNAIOOIO of lengthl is

chain on either side of the apex bent through 90°. _16NA

The length of one half of the loop in the scaled coordi- B~ | Sir(B14). (B22)
nates Is The relative change in end-to-end in extension in one half of

o B the loop is
A:F(E,k>—F(T,k). (B19 (1 ) 2[ (ﬂ. ) <7T—,3 )]
2A| 5 -1|-=| E| = ,k| -E{ —,k
X(A) = A G K[\ 2 2

As k?— 1, A —o. The trajectory is given by EqB7), where N = N
the arclength variabl& takes values from 0 tad\, defined )
above. The trajectory of the kinked loop in the asymptotic - — 4 sirf pl4 (B23)
limit is shown in Fig. 14. The length satisfies the equation No '
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