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We study the formation of loops along a DNA molecule under applied tension, as might occur in single-
DNA micromanipulation experiments with proteins which are able to simultaneously bind two DNA sites. We
consider the case of “bare” DNA in the loop, which forms a “teardrop” shape, and the case where a single
DNA-bending protein produces a “kink” in the middle of the loop; the presence of a right-angle kink in the
loop reduces its bending energy by a factor of 3. Using the bending energy plus an estimate of the free energies
associated with fluctuations and the elasticity of the extended nonlooped DNA, we obtain a probability distri-
bution for loops as a function of loop size and force. Force strongly suppresses formation of all loops, but
suppresses large loops more severely than small ones. This quenching effect of force is reduced in the presence
of a kink in the loop. We also calculate the speed at which length is absorbed into loops between arbitrary
positions along the DNAsi.e., for non-sequence-specific loop forming proteinsd. The speed of retraction of the
molecule decays as a stretched exponential function of the force with characteristic force scales depending on
the geometry of the loops.
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I. INTRODUCTION

The formation of loops in DNA is essential to a wide
variety of biological processes including site-specific recom-
bination f1g, regulation of gene expression by distant se-
quencesf2–4g, and DNA packagingf5,6g. These examples
involve loop-forming protein complexes which bind to two
sites along the DNA chain to anchor these loops. Recently, a
mechanism for motion of nucleosomes on DNA via the for-
mation of loops on DNA has been proposedf7g. We present
calculations of the free energy for forming loops on DNA
moleculessad when there is no force applied at the ends of
the molecule andsbd when the DNA molecule is being
stretched by force. We aim at describing single-DNA micro-
manipulation experiments, where the relevant forces are in
the range 0.01–50 pNf8g.

The loop free energy can be used to estimate a variety of
quantities which are relevant to single-molecule experiments
on DNA with proteins. One distribution of interest is the
probability for forming a loop of a specific length as a func-
tion of the applied tension. This quantity is relevant in study-
ing loops between specific sequences on the DNA chainfFig.
1sbdg. Another such quantity is the probability distribution of
loops of different lengthssequivalently, the rate of formation
of loops of different sizesd at a given applied tension. Such a
probability distribution is useful in studying “nonspecific”
loop formation during which the loop-forming proteins can
form a loop between two arbitrary sequences along the DNA
chainfFig. 1scdg. We will discuss results for both these types
of loops.

In addition to loop-forming proteins which stabilize loops
by attaching themselves to two sites at the base of the loop,
there are other DNA-bending proteins which might bind to a

site at the apex of the loop and bend the DNA there. In the
presence of these bending proteins, the DNA chain at the
apex of the loop is not smooth, but has a kink. This situation
in fact has arisen in single-DNA looping experiments, where
the DNA-bending protein HUf4g was present. The Gal re-
pressor proteinsGalRd represses the transcription of the gal
operon inEscherichia coliby forming a DNA loop which
encompasses the promoters of this operon. The experiments
reported in Ref.f4g indicate that the binding of HU to super-
coiled DNA, subsequently bending the DNA, is essential to
stabilize a loop formed by two GalR dimers. In this paper,
we will discuss the effect of such DNA-bending proteins on
the bending energy of the loops.

We briefly motivate our calculations and summarize our
results. In Sec. II, the elastic theory of a semiflexible poly-
mer is used to construct a model of loop formation along a
DNA, including the effect of an applied force. The basic
idea, and motivation for this as a problem, is that the applied
force will act to destabilize loop formation; this idea has
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FIG. 1. Specific and nonspecific loops.sad DNA chain without
any loops.sbd A specific loop of lengthl formed between the two
sequences marked in bold.scd Nonspecific loops that are formed
between any two points along the DNA chain.
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been discussed by a few authorsf9–13g. This paper focuses
on the process of formation of loops, calculating the prob-
ability of arriving at DNA segments formed into loop struc-
tures. We do not focus on the lifetime of the formed loops,
and instead put our attention to the problem of how the
length of the segment, its possible distortion by DNA-
bending proteins, and the applied tension, combine together
to affect the loop formation probability. The model of Sec. II
requires as input the free energy of the loop, and information
about the geometry of the looped DNA. The calculations
outlined in Secs. III and IV show the effect of DNA-bending
proteins in reducing the bending energy of the loops. We do
this by introducing a 90° “kink” in the middle of the loop,
similar to the bend inserted by HU or the DNA-bending
protein HMGB1 f14,15g, or other DNA-bending proteins
f16g.

The bending energy contribution to the free energy of a
loop can be calculated by minimizing the energy of a fila-
ment subject to the constraint of loop closure. In Appendix
A, the resulting Euler-Lagrange equation is solved with ap-
propriate boundary conditions to obtain loop shapes and
bending energies. These bending-energy-optimizing solu-
tions are useful for comparing relative energies of different
types of loops, but for free energy calculations we will need
to take into account thermal fluctuation effects. We use em-
pirical formulas based on the analysis of Shimada and Ya-
makawaf17g to provide an estimate of fluctuation effects
sSec. IIId.

We begin by presenting results for “free” loopssloops
along molecules with no end constraints, i.e., zero tensiond,
focusing on the probability of formation of loops of different
lengthsl. We consider smooth “teardrop” shaped loops, re-
covering results of Stockmayer and Yamakawaf18g and
compare them with kinked loops. We find that a 90° kink can
greatly reduce the loop bending energy.

We then move to results for loop formation in molecules
under tensionsSec. IVd, as can be done in single-molecule
experiments. Just as one example, force can be used in such
experiments to keep loops from forming. We study this using
our model, where the looping probability depends on work
done by the applied force, as well as bending energy and
entropic contributions from thermal fluctuations. To do this
we first compute the minimum-energy configurations of mol-
ecules of lengthL containing a loop of lengthl, for mol-
ecules with their ends constrained as would occur in a mi-
cromanipulation experimentsAppendix Bd.

We then combine the resulting bending energies and the
geometry of the loop region of the molecule, with the fluc-
tuation correction for the loop region, and the free energy of
the extended part of the polymer outside the loop, to arrive at
a free energy model for a loop along a long DNA molecule.
We use this to compute the distribution of loop sizes and
therefore the most probable loop size, as a function of ten-
sion. We make quantitative predictions for how tension re-
duces the most probable loop size, for both teardrop and
kinked loops. For all tensions, the presence of a 90° kink in
the loop reduces the most probable loop length by about a
factor of 3, thanks to the large saving in bending energy
introduced by the kink.

In the case where nonspecific loops form, an experiment
might observe gradual “folding up” of the molecule in time,

and a consequent reduction in extension while constant force
is applied. This kind of folding up of arbitrary sequences of
DNA occurs during the packaging of DNAf5g. We calculate
the rate at which the ends of a DNA molecule would be
pulled in during the formation of nonspecific loopssSec. Vd.
Our calculation applies most simply in the regime where the
displacement of the DNA against the applied force is the
rate-limiting part of this process. We find that the speed at
which the molecule contracts decays as a stretched exponen-
tial function of force. This is much slower than a simple
exponential decay with force as is the case for loops of fixed
length. Specifically, the speed of nonspecific loop formation

decays ase−Îsf−f* d/f0, wheref* and f0 are characteristic force
scales depending on the geometry of the loops. These forces
are factors of the basic force scale in the system, 1/sbAd and
are higher for loops which have lower bending energy.

II. FREE ENERGIES OF THE OPEN AND ONE-LOOP
CONFIGURATIONS OF DNA

Double-stranded DNA is quite stiff with a persistence
lengthsdenoted byAd of 50 nm. The persistence length is the
length over which the tangent vectors at points along the
DNA molecule remain correlated. In terms of the number of
base-pairs along the sequence this length is 150 base pairs.
The energy associated with DNA conformational changes is
well described by the wormlike chain model. The bending
modulus for the DNA polymer is justkBTA. The Kuhn seg-
ment lengthsdenoted bybd is 2A. The unit of thermal energy
1kBT=4.1 pN nmsat 300 Kd. The total contour length of the
DNA molecule is denoted byL.

We first summarize the free energy of a DNA molecule
subjected to force at the endsf19g. Let us consider a linear
piece of a DNA molecule of lengthL. A force f is applied to
this molecule. The unit tangent vector at each point along the
contour of the molecule is denoted byû. The energy of
gradual bends in the DNA molecule is given by

bE =
A

2
E

0

L

dsSdû

ds
D2

, s1d

wheres is the arclength variable measured along the contour
of the loop. The extension of the molecule due to the applied
force is z=e0

Ldsû·ẑ. The partition function can therefore be
written as a path integral

Zsfd =E Dûe−bsE−fzd

=E Dû expH−E
0

L

dsFA

2
Sdû

ds
D2

− bfû · ẑGJ . s2d

We define a dimensionless quantitygsbAfd which is the
free energy per unit lengthsin the fixed force ensembled
f12,19g. This quantity can be related to the partition function
through
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gsbAfd =
A

L
ln Z. s3d

Although this can be exactly evaluated as a function of the
force f19g, we give only the asymptotic forms here. In the
f →` limit, the path integral becomes a Gaussian integral
and it can be shown thatgsbAfd=bAf−ÎbAf+¯. The high
force limit corresponds tobAf.1. In the low force limit
swhenbAf,1d, gsbAfd=sbAfd2/3+¯.

The relative probability of forming a loop of sizel from
the unlooped state is proportional to the exponential of the
difference in free energy between these two states. The free
energy of a DNA strand of lengthL in the unlooped state
subject to an external forcef fFig. 1sadg is given by

ln Zopen=
L

A
gsbAfd, s4d

wheregsbAfd is the dimensionless free energy described in
the preceding subsection. In the “one-loop” configuration
fFigs. 1sbd and 1scdg, the free energy may be written as

ln Zclosed= f− bEbg + FL − sl + 2ed
A

gsbAfdG
+ contributions from fluctuations. s5d

The first term is the curvature energy cost in bending a
portion l !A of the DNA polymer into a loop. This term is
dominant for loops of small sizessless than a persistence
lengthd. For a perfectly circular loopbEb=2p2A/ l. When
force is present, the ends of a polymer are pulled in by an
additional distance 2e ssee Fig. 5 belowd during the forma-
tion of the loop due to the necessity to bend the DNA be-
tween the loop and the force-extended regions. Therefore,
the total loss in length of the molecule when the loop is
formed, neglecting bending fluctuations along the extended
parts of the chain, isl +2e. The second term in Eq.s5d com-
putes the work done by the external force on the portionL
−sl +2ed of the polymer which is not part of the loop.

The final term is the contribution to the free energy due to
entropic fluctuations in the loop region. For large loops, the
entropic cost of loop formation is the familiar Gaussian term
s3/2dln l f20g. For small loops, it is difficult to estimate the
form of the contributions from entropic fluctuations analyti-
cally. Based on their detailed numerical analysis, Yamakawa
and Shimada proposed an empirical formula for the loop-
closure probability, from which we extract an estimate of the
entropic contributionf17g. We will discuss this in more detail
below. In the next section, we fill in the unknowns in Eq.s5d,
for the case of a “free” loop under zero tension, whereg
=0. We will also discuss the form for the contributions from
fluctuations in the loop, which will allow us to compute the
zero-force loop-formation probability distribution. Then, in
Sec. IV we will generalize our results to nonzero applied
tension. Recently, it has been suggested that very small loops
may require substantially less bending energy for their for-
mation, due to nonlinear elastic effects not included in Eq.
s1d. Our model can be readily modified to include such ef-
fects, through modification ofEb for small l.

III. LOOPS IN DNA WITH FREE ENDS

When no force is applied at the ends of the DNA mol-
ecule, the parts of the molecule that do not form the loop do
not play a role in determining the shape and energy of the
loop sg=0d. Hence, for all the calculations in this section, we
will work with only the portion of the DNA molecule that
forms the loop, of lengthl. This is relevant to the cyclization
of a long chain of DNA, or the formation of a loop in a
molecule with ends that are not under tension or other con-
straint.

A. Simple calculation for bending energy of a loop

In this subsection we will first review how a loop which is
teardrop shapedfshown in Fig. 2sadg has substantially lower
bending energy than a perfectly circular loop. Later, we will
show that the presence of a kink in the loopfFig. 2sbdg can
lead to a large further reduction in the loop bending energy.
For notational convenience we will refer to these two types
of loops as the teardrop loop and the kinked loop, respec-
tively. We search for configurations minimizing the bending
energy in which the angle of juxtaposition between the two
arms of the DNA molecule is not fixed. Alternately, we could
also do the minimization to find configurations having a
fixed angle of juxtaposition. We will use a simple calculation
to calculate the bending energy for different types of loops
based on the “circle-line” approximation introduced by Kulić
and Schiesself7g.

Consider the loop shown in Fig. 2sad. In this case, the
angle made by the tangent vector with theX axis at the apex
of the loop isp rad. We calculate analytically the energy of
the loop as a function of the anglea and then minimize the
energy with respect toa to find the most favorable angle.
In Fig. 2sad, AB is a portion of a circle and has a length
l /2−D, D being the length of the linear portion. Let the
radius of curvature of the circle of whichAB is a part beR.
Hence,Rsp−ad=sl /2d−D. We also know thatD=R tan a.
Using this the above equation becomesR=sl /2d / sp−a
+tanad. The curvature of the circle is given by the inverse
of this radius. The linear part of the loop does not have any
curvature energy. Thus, the bending energy of the loop is,
from Eq. s1d,

FIG. 2. sad The teardrop loop; angle at the apex of the loop isp.
sbd The kinked loop; angle at the apex of the loop isb.
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bEsad =
2A

l
sp − adsp − a + tanad. s6d

The minimum of this energy occurs ata=0.8948 rad and
Emins0.8948d=15.6987A/ l s kBT unitsd. A perfectly circular
loop of lengthl has a bending energy 2p2A/ l. The ratio of
this energy to that of a perfect circle of the same length is
0.7953. This shows that the most favorable configuration for
a loop in the absence of DNA-bending proteins is the one
shown in Fig. 2sad. We note that this bending energy and
loop-opening angle are those obtained by Kulić and Schies-
sel using their “circle-line” approximationf7g.

We can generalize this argument for loops which have a
kink at the apex. For example, such a loop might be formed
by the presence of DNA-bending proteins and is shown in
Fig. 2sbd. Let the angle made by the tangent vector with the
X axis at the apex of the loop beb. As before, for the circular
section of the loop,Rsb−ad=sl /2d−D. In the geometry
shown above,R=sl /2d / fb−a+ssin a−sin bd /cosag. The
energy is

bEsad =
2A

l
sb − adSb − a +

sin a − sin b

cosa
D . s7d

As before, we choose the loop length to be 10A. With b
=2.356 19 radsthis value ofb corresponds to having a 90°
bend at the apex of the loopd, we minimize this energy with
respect to a and find that amin=1.1929 rad andEmin
=4.108 44A/ l s kBT unitsd. Expressed as a fraction of the
energy of a perfect circle this is 0.2081. Thus a kink in the
loop can lead to a large reduction in loop bending energy
sreducing it by a factor of almost 4 from that for a teardrop
shaped loopd.

B. Exact bending energy for noncircular loops using the
elastic filament model

We now compute the bending energy for the two different
kinds of loops shown in Figs. 2sad and 2sbd. Yamakawa and
Stockmayer calculated the equilibrium configuration for the
teardrop loopf18g. Since the ends of the loop are not sub-
jected to torque, the curvature at the base of the loop must
vanish. This boundary condition along with the constraint of
loop closure defines the equilibrium shape of the loop
uniquely. Via calculations shown in Appendix A we repro-
duce the Yamakawa-StockmayersYSd result for the teardrop
loop, and also find the minimum-energy configuration for the
kinked loop. The calculations are essentially those of the
classical “elastica” problemf21g. The influence of DNA-
bending proteins on the the DNA molecule has also been
studied in the context of interaction between proteins bound
to DNA f10,11g.

The results of Yamakawa and Stockmayer show that when
no force is applied, the shape of the loop is determined by
the boundary condition of zero curvature at the base of the
loop fsee Fig. 2sadg and by the constraint of loop closure
f18g. The anglea was 0.8604 rad. To verify the results of
Yamakwa and Stockmayer, we use the values ofb=p rad
and a=0.8604 rad in Eqs.sA9d and sA11d and obtaina8
=0 andf =2.154/l. The energy is 14.055A/ l snote bothf and

E are reduced by a factor ofkBTd. This energy is 0.712 times
the energy of a perfectly circular loop of the same length.
Figure 3sad shows the YS loop shapesin the figure, the loop
has length 10d. The shape of the loop is unique and the
energy scales as 1/l.

We imagine also the case where a DNA-bending protein
produces a strong kink at the apex of the loop. We model this
by imposing a boundary conditionbÞp. A loop with a 90°
kink between its arms at the apex hasb=2.3562 rad. We find
that the lowest energy configuration of such a loop has
a=1.1874 rad anda8=0. The energy of such a loop issin
units ofkBTd is 3.6567A/ l, or a fraction 0.1853 of the energy
of a circular loop of the same length. Comparing this energy
with that for the teardrop loop, we find that the presence of
the 90° kink lowers the bending energy by almost a factor of
4. The kinked loop is shown in Fig. 3sbd sthe loop in the
figure has contour length 10d.

C. Loop length distribution at zero force

As mentioned in Sec. II, Shimada and Yamakawaf17g
proposed an empirical formula for the probability distribu-
tion including effects of thermal fluctuations in the loop re-
gion. They began by calculating the most probable configu-
ration of a closed loop. Fluctuations around this lowest
energy state were integrated to obtain the entropic correction
to the bending energy of the most probable configuration.
The difference in free energy of the open and closed states of
the DNA molecule discussed in Sec. II appears in the expo-
nential term of this distribution. Since there is no external
force, from Eq.s5d and Eq.s4d, this energy is just the sum of
the bending energy and the contributions from fluctuations.
The formula is

psnd = Hp2n−6e−bEb+0.514n for a circle,

28.01n−5e−bEb+0.492n for a teardrop,

wheren is the number of segments of lengthb in the loop
sn= l /b= l / f2Agd, bEb is the bending energy for the loop

FIG. 3. sad The teardrop loop,b=p rad, andsbd the kinked loop,
b=2.3562 rad. These are the exact shapes of the loops.
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sp2/n for a circle and 7.027/n for a teardropd, and the sec-
ond factor in the exponential gives the correction due to
fluctuations, in each case. In the above formulas all lengths
are measured in units of a segment lengthb=2A. We note
here that this formula diverges for loop lengths greater than a
few thousand kilo-base-pairs and make sure that we use it
when the total length of the molecule is less than 2 kilobases.
For large enoughn, the free energy must approach the
Gaussian limit and the probability should decay as a power
law sn−3/2d. The interpolation of the above formula to the
Gaussian limit is not relevant to our results and thus we do
not discuss it further. The expression for the teardrop loop
gives the correct value of the most probable loop size
saround 500 base pairs orn=1.6d at zero force.

We suppose that the loop is formed only when the loop-
forming sequences on the DNA polymer are nearer than
some critical distanced within a segment volumeb3 where
d!b. To take this effect into account we multiply the prob-
ability distribution by the factord3/b3. We consider a reac-
tion distanced of 1 nm f4g. Our probabilities are therefore
those to find the loop ends in the same 1 nm3 volume and
may be converted to mol/l by multiplying by a factor of 0.6.

We use the bending energies calculated in the previous
subsection to write down the probability distribution of a
single loop of sizel, relative to the open state. The expres-
sions are

psnd =5
p2d3

b3n−6e−p2/n+0.514n for a circle,

28.01
d3

b3n−5e−0.712p2/n+0.492n for a teardrop loop

28.01
d3

b3n−5e−0.1853p2/n+0.492n for a kinked loop,

,

s8d

wheren= l /b is the number of statistical segments in the loop
srecallb=2Ad. The assumption here is that the correction for
fluctuations has the same forme0.492n for both the teardrop
loop and the kinked loop.

The above expression is central to all the calculations we
present in the following sections. We therefore reiterate the
meaning of this formula. This formula gives the probability
distribution for the length of the loops formed at zero applied
force. A loop is said to be formed if two points on the DNA
polymer lie within a distanced of each other. This expression
includes the bending energy and the contributions due to
fluctuations in the loops. The effects of an external force on
the probability distribution are discussed in Sec. IV.

The plots in Fig. 4 show the probability distribution for
the length of the loop formed when there is no tension ap-
plied to the ends of the DNA molecule. The distributions are
plotted as a function of the number of base pairs along the
chain; recall that each segment of length 100 nm contains
300 base pairs. We see a shift in the peak of this distribution
toward smaller loops as we go from a perfectly circular loop
to the kinked loopfFigs. 4sad–4scdg. The most probable loop
sizes at zero force are around 550, 480, and 110 base pairs
for a circular loop, a teardrop loop, and a kinked loop, re-

spectively. We also observe that the probability of formation
of these loopssequivalently, the rate of formationd increases
dramatically when the kink is added. In the zero-force re-
gime, the bending energy is dominant and the loop that has
the lowest bending energy among the three is the most prob-
able. At zero force, numerical calculations and empirical
analysis also determine this peak to be around 500 base pairs
for teardrop loopsf17,22,23g.

IV. LOOPS IN DNA WITH ENDS CONSTRAINED BY
EXTERNAL FORCE

When tension is applied to the ends of the DNA molecule
sas is the case in micromanipulation experiments on DNAd,
we need to take the full length of the molecule into account
fi.e., the lengthl which forms the loop and the lengthL−sl
+ed which is outside the loopg. The applied force does work
to pull the two ends of the molecule together during the
formation of a loop and this work must be included in esti-
mating the free energy. We also wish to estimate the bending
energy stored in the part of DNA that is outside the loop
region in addition to the energy stored in the loop. In this
section, we calculate the bending energy, the end-to-end ex-
tension, the length of the loop, and the “opening angle” for
the two types of loops. We also calculate the asymptotic

FIG. 4. Zero-force probability distribution for the length of the
loop for the circular loop, the teardrop loop, and the kinked loop.
Note that the most probable loop size shifts to shorter distances
along the loop and the peak height increases fromsad to scd.
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values of these quantities in the long-chain limitswhen L
→`d and show that the length of the loop,l, is finite in this
limit. We do all the calculations for one-half of the loop.
Since the loop is symmetric, all the quantities can be doubled
to obtain values for the full loop. We carry out the detailed
calculations in Appendix B and list only the results in this
section. We note that unlike the loops described above which
were all described by length-independent loop shapes, the
loops of this section are members of a one-parameter family
of loop shapes. The dimensionless shape parameter can be
considered to beL / l fwe also use a parameter calledl0 ssee
Appendix Bd, which is more convenient as it reaches a finite
limit when L / l →`g. Our notation for the geometry is sum-
marized in Fig. 5.

A. Teardrop loop with constrained ends

For a teardrop loop of total lengthl in a molecule of
length L, l0=1.915 008ssee Appendix Bd and E<8l0A/ l
=15.3201A/ l. This is slightly more than the result for the
energy of a teardrop loop of the same length at zero tension
of 14.0549A/ l. This means that for an end-constrained DNA
chain, the region outside the loop contributes to the bending
energy and stores roughly 10% of the total energy. Hence, in
estimating the bending energy for the DNA chain in the pres-
ence of tension, it is important to take the parts of the chain
outside the loop into account.

We plot the probability distribution as a function of
the size of the loop at different forces. The typical forces
used in micromanipulation experiments are in the range
0.01–10 pN. The free energy per unit lengthgsbAfd is non-
zero and the second term in Eq.s5d must be included in
computing the probability density. Therefore, the probability
density for a loop of sizel =nb is given by the expression

psnd = 28.01
d3

b3n−5e−4l0/n+0.492ne−2ngsbAfd. s9d

The change in the end-to-end extension of the whole mol-
ecule in the looped state from its fully extended state is only
1.04 times the size of the loop. We therefore neglect the extra

contribution frome in calculating the work done by the force
in folding the polymer into the one-loop configuration. When
bAf,1 slow force regimed we usegsxd=x2/3. WhenbAf
.1 shigh force regimed, we usegsxd=x−Îx. The plots in
Fig. 6 show the probability distribution when the applied
tension lies between 0.01 and 0.5 pN. The distributions are
plotted as a function of the number of base pairs along the
DNA chain seach segment of length 100 nm contains 300
base pairsd. As expected, the peak of the distribution shifts
toward smaller loop sizes as the force is increased. We will
return to a discussion of the results in Sec. V.

B. Kinked loop with constrained ends

Calculations for the 90° kinked loop including ends under
tension are given in Appendix B 1. We simply list the results
here. For the 90° kinked loop,b=2.356 19 rad, and the
shape parameterl0=1.011 69 ssee Appendix Bd, and E
=4.9963A/ l in theL / l →` limit. Compared to the energy for
a teardrop loop of the same length, the energy has been re-
duced by a factor of almost 3.

In the kinked loop case, the distancee=0.22l and the
work done by the force in pulling the ends of the DNA
through this distance must be taken into account. The angle
between the tangent vector and theX axis at the base of the
loop is asymptoticallya=0.954 13 rad. The “opening angle”
of this loop is therefore 1.2333 rad.

The probability distribution function is

psnd = 28.01
d3

b3n−5e−8l0 sin2sb/4d/n+0.492ne−231.22ngsbAfd.

s10d

The factor 1.22 in the last term takes into account the change
in extension due to both the formation of the loop and mov-
ing the ends through the distancee. The plots in Fig. 7 show
the probability distribution function as a function of the size
of the loop sin base pairsd for different values of applied

FIG. 5. Notation for the lengths in the scaled coordinates. Note
that all quantities are specified for one half of the loop. Also shown
is the “reaction distance”d, which is the distance with in which the
ends of the loop must approach each other in a segment volume to
form a loop. The “opening angle” of the loop is 2s90°−ad. The
ends of the polymer are pulled in through a distance ofe by the
force.

FIG. 6. Teardrop loop: Probability distribution for the length of
the tear-drop loop as a function of the number of base pairs along
the chain for different forcesf24g.
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tension. The lower bending energy of the kinked loop causes
the peak of the distribution function to occur at smaller loop
sizes than in the case of a tear-drop loop.

V. RESULTS FOR LOOP FORMATION ALONG DNA
UNDER TENSION

A. Nonspecific loops

The plots in Figs. 8 and 9 show the most probable loop
size and the logarithm of the probability at the peak, as a
function of the applied tension. From Fig. 8 we observe that
the most probable loop size for teardrop loops is larger than
that for kinked loops. The higher bending energy causes the
teardrop loop to be nearly three times larger than the kinked
loop in the low forcesbending-energy-dominatedd regime. In
both cases, the loop size decreases with increasing force. As
the applied force is increased, the work done by the applied

force in bringing the ends of the DNA closer while forming
the loop starts dominating over the bending energy.

Figure 9 shows the logarithm of the probability at the
peak of the probability distributions shown in Figs. 6 and 7,
as a function of force. At 0.01 pN, the most probable loop
size for the teardrop loop is 550 base pairs which occurs with
a probability of the order of 10−7 mol/ l f24g. For the kinked
loop at the same force the most probable loop of size 160
base pairs occurs with a probability of the order of
10−5 mol/ l. This means that the rate of formation of a kinked
loop is much higher than the rate of formation of the teardrop
loop. For the kinked loop, the rate at which the value of the
probability at the peak decreases is much slower than that for
the teardrop loop, showing that the teardrop loop is more
sensitive to force.

To see the effect of force on the formation of nonspecific
loops more clearly we plote0

Lpsldl dl as a function of force.
This quantity is proportional to the rate at which length is
absorbed into loops during the initial folding up of a long
DNA chain. This way of estimating the dynamics of loop

FIG. 7. Kinked loop: Probability distribution for the length of
the kinked loop as a function of the number of base pairs along the
chain for forces between 0.01 and 1 pN.

FIG. 8. Most probable loop size forsad the teardrop loop andsbd
the kinked loop as a function of the applied tension in piconewtons.
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formation is valid at large forces where the energy barrier for
the formation of the loop is greater than a fewkBT. The
energy barrier for the loop formation is the sum of the free
energy for loop formation and the work done by the force. At
forces above 0.1 pN, the energy barrier is a fewkBT. This
means that at forces higher than 0.1 pN, the rate at which the
ends of the polymer are retracted is dominated by the free
energy and the work done by the force and the probability
distribution estimated from these quantities can be used to
calculate the rate.

From the graph shown in Fig. 10, we see that the speed of
nonspecific loop formation decays with increasing force as a
stretched exponential. This slower decay occurs during non-
specific folding because loops of different lengths can form
in contrast to specific folding where loops have a fixed

length. The asymptotic form for the decay ise−Îsf−f* d/f0,
where f* and f0 are characteristic force scales of the
stretched exponentialsthis is easily shown using a steepest
descent calculationd. The values off0 and f* are higher for

loops with lower bending energysi.e., loops that are easier to
formd. We find that for a teardrop loopf0=0.0051 pN and
f* =0.0012 pN, while for a kinked loopf0=0.0134 pN and
f* =0.0372 pN. Preliminary results for single-DNA microma-
nipulation experiments in the presence of proteins which
nonspecifically loop the DNA show the existence of charac-
teristic force scales for loop formationf25g.

B. Specific loops

When loops are formed between specific sequences on the
DNA chain, the length of the loop is fixedsit is the distance
between the two sequences along the chaind. An example is
shown in Fig. 1sbd. For such specific loops, it is useful to
study the behavior of the probability distribution as a func-
tion of the applied force. These plots are shown in Figs. 11
and 12 for the two kinds of loops.

The low force regime is dominated by the bending energy.
Since the bending energy of larger loops is lower, they domi-
nate in the low force regime. As the force increases, the
bending energy competes with the work done by the force in
pulling the ends of the DNA together while forming the loop.
The crossover from the bending-energy-dominated to the
force-dominated regime is indicated by the curves crossing
each other around 0.3 pN. At forces higher than 0.3 pN, the
work done by the force is dominant and favors loops of
smaller sizes200 base pairs in the plot shown in Fig. 11d.
The same trend is observed for a kinked loop as shown in
Fig. 12.

VI. CONCLUSIONS

This paper describes the formation of loops in a DNA
molecule under tension. We can estimate the most probable

FIG. 9. Logarithm of the probability at the peak as a function of
the applied tension in piconewtons:sad teardrop loop andsbd kinked
loop. The interpolation between the low and high force regimes is
plotted in dotted lines.

FIG. 10. Plot of the logarithm of the rate at which length is
absorbed into nonspecific loops. TheY axis is log10fe0

L dl lpsldg; the
integral is proportional to the rate at which length is retracted dur-
ing the formation of the first few loops along a long DNA molecule.
Shown as an inset is a sketch of the process by which the DNA
molecule is folded into nonspecific loops of different sizes when it
is being stretched by force. The quantityv is the integral shown
above andf is the applied tension.
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loop size at a given force for a loop with and without a kink
at its apex. It is found that the kinkswhich may be produced
due to the presence of a DNA-bending proteind substantially
reduces the bending energy of the loop. Hence, at a given
force, loops with kinks are smaller than those without kinks.
For example, at a force of 0.15 pN, the teardrop loop has a
size of 400 base pairs while the kinked loop has a size of 130
base pairs. The value of the probability at the peak is higher
for kinked loops than for teardrop loops which indicates that
these loops are formed faster.

This analytic calculation is designed to obtain the correct
position of the peak in the probability distribution at zero
force s480 base pairsd. Based on this, we are able to predict

the distribution for kinked loops; we find that a 90° kink
reduces the peak position to around 150 base pairs at zero
force. Another prediction that can be made is the shift of the
peak position with force and an estimate of the force range
below which loop formation is favored. From Figs. 6 and 7,
for nonspecific loops, we infer that the most probable loop
size decreases with increasing force. The teardrop loops are
more sensitive to increase in force and are suppressed at
lower forces compared to kinked loops. Very recently, ex-
periments which show anomalously large loop formation on
very shorts100 base pairsd DNA f26g have led to the pro-
posal that thermally excited defects in the double-helix struc-
ture might allow similar sharp bends to occur in the absence
of bending proteinsf23g; our calculations might be applied to
this situation as well.

We also estimate the rate at which the ends of a DNA
chain are pulled in by nonspecific loop formation. The esti-
mate for this process is valid at forces higher than 0.1 pN. At
lower forces, the free energy cost of formation of loops in the
few hundred base-pair range is low enough that the dynamics
of the loop formation process becomes dominated by the
dynamics of the two ends of the polymer randomly ap-
proaching each other within a distance ofd. The plot of the
speed of retraction by nonspecific loop formation is shown as
a function of force in Fig. 10. The speed of retraction for
both types of loops decays as a stretched exponential func-
tion of the force. The reduction in the speed of retraction
with increase in force is stronger for teardrop loops.

We also estimate the probabilitysequivalently, the rated of
formation of specific loops of a given length as a function of
the applied force. Shorter loops are more probable at high
force while the longest ones are favored at forces below
0.3 pN.
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APPENDIX A: BENDING ENERGY FOR LOOPS WITH
FREE ENDS

Following YS f18g, we start by minimizing the energy in
Sec. II subject to the constraint that the loop is closed. We
will minimize the energy for one half of the loop and will get
the full shape of the loop by reflecting this half along theY
axis. Thex andy coordinates of any point on the polymer are
given byxssd=e0

sû·êx andyssd=e0
sû·êy, whereêx and êy are

the unit vectors along theX andY axes, respectively.
The condition of loop closure implies that the total dis-

tance traveled by the polymer along theX axis must be zero
at the apex of the loop:

E
0

l/2

û ·ex = 0. sA1d

The angle between the tangent vector and theX axis isvssd.
Then,û= êx cossvd+ êy sinsvd, sdû/dsd2=sdv /dsd2.

FIG. 11. Probability of forming a teardrop loop of a specific
length as a function of the applied tension in piconewtons. The
curves cross each other around 0.3 pN, above which the smallest
loop is the most probable. The interpolation between the low and
high force regimes is plotted in dotted lines.

FIG. 12. Probability of forming a kinked loop of a specific
length as a function of the applied tension in piconewtons. The
interpolation between the low and high force regimes is plotted in
dotted lines.
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The bending energy in Eq.s1d should be minimized with
respect to the constraint in Eq.sA1d using a Lagrange mul-
tiplier f. The functionsincluding the constraintd to be mini-
mized is

S=
1

2
E

0

l/2

dsFASdv

ds
D2

− f cosvG . sA2d

ComputingdS=0 yields the equation of motion

− A
d2v

ds2 + f sin v = 0. sA3d

To get the trajectory of points on the polymer we evaluate
Eq. sA3d using the initial values for angle and curvature as
boundary conditions. Hence, ats=0,

vss= 0d = a;Udv

ds
U

ss=0d
= a8. sA4d

Integrating the equation of motion once, we get

A

2
Sdv

ds
D2

= − f cosv + C1. sA5d

C1 is determined using the boundary conditions to beC1
=sA/2da82+ f cosa. We change variables tov=sp−vd /2
and letk2=2f / sC1+ fd. EquationsA5d becomes

− 2
dv
ds

= ± F2sC1 + fd
A

G1/2

s1 − k2 sin2 vd1/2. sA6d

Integration with respect to the variablev yields the trajectory

− 2E
sp−ad/2

fp−vssdg/2 dv
s1 − k2 sin2 vd1/2 = ± F2sC1 + fd

A
G1/2E

0

s

ds.

sA7d

The sign on the right-hand side of the equation above is
chosen so thatvssd always increases with increasings for
vssd decreases with increasingsg. In terms of elliptic inte-
grals the trajectory is

FSp − vssd
2

,kD = FSp − a

2
,kD − F2sC1 + fd

A
G1/2s

2
.

sA8d

Let the angle made by the tangent vector at the top of the
loop bebfi.e.,vss= l /2d=bg. Therefore, given the initial val-
uesa anda8, the angleb sas a function offd can be deter-
mined as

b = p − 2 amFFSp − a

2
,kD − Sa82 +

4f

A
cos2 a/2D1/2 l

4
,kG ,

sA9d

where “am” is the Jacobi amplitude. The “am” is the inverse
of the elliptic integral of the first kind, amfFsu ,kd ,kg=u.

Alternatively, we could usea andb as the boundary con-
ditions rather thana anda8. Whenb is specified instead of
a8, we treat Eq.sA9d as an equation in the two variablesa8
and f. For the teardrop loop, the angleb=p rad. In the

kinked loop, b=2.3562 rad, corresponding to producing a
90° kink between the two arms of the DNA chain.

To solve fora8 and f we need one more equation in these
two variables. This is the equation for the constraint given by
Eq. sA1d. This can be written as

− 2

fa82 + s4l/Adcos2 a/2g1/2E
F„sp−ad/2,k…

F„sp−bd/2,k…

du sn2u =
l

4
,

sA10d

where the function “sn” is the Jacobi sine amplitude. Using
the identity inf27g, the constraint equation is

2

k2fa82 + s4f/Adcos2 a/2g1/2FESp − b

2
,kD − ESp − a

2
,kD

+
l

4
Sa82 +

4f

A
cos2 a/2D1/2G = l/4. sA11d

We now solve Eqs.sA9d and sA11d for the unknown vari-
ablesa8 and f numerically. The energy of the loop is given
by

A

2
E

0

l

dsSdv

ds
D2

= − fE
0

l

ds cosvssd + C1E
0

l

ds= C1l ,

sA12d

using Eq.sA1d.

APPENDIX B: BENDING ENERGY FOR LOOPS WITH
CONSTRAINED ENDS

Before proceeding, we will rescale the length variable in
our equation to absorb the Lagrange multiplierf and the
persistence lengthA so that the equations of motion in the
rescaled coordinates can be easily solved. In the rescaled
coordinates, we denote the total length of the DNA chain by
2L and the length of the loop as 2l. Using the transforma-
tion s=s/s0, where s0=ÎA/ f, the equation of motion Eq.
sA3d becomes

− A
d2v

ds2 + sin v = 0. sB1d

Integrating this we get

1

2
Sdv

ds
D2

+ cosv = C. sB2d

Changing variables toc=sp−vd /2,

Sdc

ds
D2

=
C + 1

2
S1 −

2

C + 1
sin2 cD . sB3d

Sincevssd increases ass increases,

Sdc

ds
D = −ÎC + 1

2
ÎS1 −

2

C + 1
sin2 cD . sB4d

Using a second scaling transformationS=ÎfsC+1d /2gs,
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Sdc

dS
D = − Îs1 − k2 sin2 cd, sB5d

wherek2=2/sC+1d. The trajectory of the DNA chain is the
solution of this equation with the appropriate boundary con-
ditions. The trajectory depends only on the parameterk. The
angle made by the tangent vector atS=0 is a=0. Therefore,

FSp − v

2
,kD = FSp

2
,kD − S. sB6d

This means that

vsSd = p − 2 amFFSp

2
,kD − S,kG . sB7d

vsLd=p corresponds to the teardrop loop andvsLd=bÞp
gives the trajectory of a loop with a kink. The parameterk
determines a family of solutions characterized by the ratio of
the length of the loop to the total length of the molecule in
each case. Ask→1, the length of the polymer becomes in-
finite. As k→0, the length of the polymer approaches zero.
These solutions are those obtained in the “elastica” problem
and for the nonlinear pendulumf21,28g.

1. Teardrop loop in the presence of tension

In the absence of DNA-bending proteins, the anglev
=p at half the total length of the chainsi.e., whenS=Ld.
Therefore,

L = FSp

2
,kD . sB8d

From this expression we see that ask→1, L→`. Thus, the
long-chain limitsL→`d can be obtained by takingk close to
1. The trajectory of the loop in the asymptotic limit is shown
in Fig. 13. We pause here to note that the total length of the
DNA molecule in physical units is

L = 2ÎA

f
kL. sB9d

We also note that the Lagrange multiplierf can be physically
interpreted as the tension in the chain, in the absence of
thermal fluctuations. The effect of thermal fluctuations has
been taken into account in computinggsbAfd.

The loop length in the scaled coordinates, 2l, is deter-
mined as follows. The constraint of loop closure yields

eL−l
L dS cosvsSd=0, to be solved forl. This integral can be

written as

E
l

0

du cosf2 amsu,kdg = 0, sB10d

where u=F(sp−vd /2 ,k)=Fsp /2 ,kd−S. Using the identity
in f27g we get the equation forl as

ls2 − k2d = 2E„amsl,kd,k…. sB11d

In the asymptotic limitk2→1 or L→`. The solution to this
equation gives a finite value ofl. Numerically, the
asymptotic limit is forl is l0=1.915 008. SinceEsf ,kd is
analytic ask→1 f29g, l behaves analytically close to its
asymptotic value and can be expanded as a power series
around the value atk2=1. The values of the first and higher
derivatives ofl with respect tok2 can be obtained numeri-
cally at points close tok2=1. This enables us to write the
power series aslskd=l0+sk2−1dl1+sk2−1d2l2+¯, where
l0=1.915 008,l1=0.669 85, andl2=0.8 can be computed
numerically. The lengthL can also be written as a series
aroundk2=1 f27g as

Lskd = ln
4

s1 − k2d1/2 +
1 − k2

4
Fln

4

s1 − k2d1/2 − 1G + ¯ .

sB12d

Therefore,

l

L
=

l

L
<

l0

lnf4/s1 − k2d1/2g
. sB13d

This enables us to relatek2 to the physical lengthssin the
asymptotic limitd through the relationk2<1–16e−2l0L/l.

The end-to-end extension for one half of the loop,xsLd,
shown in Fig. 5, can be evaluated using the identity inf27g:

xsLd =E
0

L

dS cosvsSd = S 2

k2 − 1DFSp

2
,kD − 2ESp

2
,kD .

sB14d

The total end-to-end extensionsmeasured between the points
A andB shown in Fig. 5d is twice the above value. The ratio
of the change in extensionsfrom the maximum ofLd to the
loop lengthl is asymptotically

xsLd − L

l
< −

2

l0
+

16L

l
e−l0L/l . sB15d

Figure 5 shows the ends of the polymer pulled in during the
formation of the loop. The relative change in extension cal-
culated above gives us an estimate of the distancee defined
as xsLd−L+l=−e. For the teardrop loop, this distance is
only a small fraction of the loop size,e=0.04l. Thus,e does
not contribute significantly to the work done by the external
force in folding the DNA into a loop. The angle between the
tangent vector and theX axis at the base of the loop asymp-
totically approachesa=0.5852 rad. The “opening angle” of
the loop, which is defined as the angle between the two arms
of the loop at the base of the loop, is 1.9712 rad.

FIG. 13. Trajectory of the teardrop loop in the presence of ap-
plied tension in the asymptotic limit.
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We can evaluate the energy exactly in the scaled coordi-
nates. The energy for half the total length of the loop is

Es =
1

2
E

0

L

dSSdv

dS
D2

=Ck2E
0

L

dS − k2E
0

L

dS cosv

=s2 − k2dL − k2xsLd

=2ESp

2
,kD . sB16d

The energy for the full loop is twice the above energy. As-
ymptotically, we can express this energy as a function of the
physical lengthsL and l as

Es < 2 +
16 l0L

l
e−2 l0L/l . sB17d

The relation between this scaled energy and the total energy
E in the original coordinate system is

E = 4
A l

l
Es. sB18d

2. Kinked loop in the presence of tension

We now extend the calculations of the previous subsec-
tion for a loop that has a kink due to the presence of DNA
bending proteins. As we will show below, the presence of the
kink lowers the bending energy. The angle made by the tan-
gent vector with theX axis at the apex of the loop isb
=135°. This corresponds to having the arms of the DNA
chain on either side of the apex bent through 90°.

The length of one half of the loop in the scaled coordi-
nates is

L = FSp

2
,kD − FSp − b

2
,kD . sB19d

As k2→1, L→`. The trajectory is given by Eq.sB7d, where
the arclength variableS takes values from 0 toL, defined
above. The trajectory of the kinked loop in the asymptotic
limit is shown in Fig. 14. The lengthl satisfies the equation

lsk2 − 2d = 2HESp − b

2
,kD

− EXamFl + FSp − b

2
,kD,kG,kCJ sB20d

and has a finite valuel0=1.011 69 in the asymptotic limit.l
can be expanded as a powerseries around its asymptotic
value and corrections away fromk2=1 can be calculated. We
can also show thats1−k2d1/2<4 tansb /4de−l0L/l asymptoti-
cally f29g.

The energy for half the total length of the loopsin the
scaled unitsd is

Es = 2FESp

2
,kD − ESp − b

2
,kDG

< 4 sin2b

4
+ 16 tan2

b

4

e−2l0L/lFl0L

l
−

1

2
+ cossb/4dG asL → `.

sB21d

In the asymptotic limit, the energy in physical units for a
loop of lengthl is

E <
16l0A

l
sin2sb/4d. sB22d

The relative change in end-to-end in extension in one half of
the loop is

xsLd − L

l
=

2LS 1

k2 − 1D −
2

k2FESp

2
,kD − ESp − b

2
,kDG

l

<
− 4 sin2 b/4

l0
. sB23d
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